Relative Depth Order Estimation Using Multi-scale Densely Connected Convolutional Networks
نویسندگان
چکیده
We study the problem of estimating the relative depth order of point pairs in a monocular image. Recent advances [1], [2] mainly focus on using deep convolutional neural networks (DCNNs) to learn and infer the ordinal information from multiple contextual information of the points pair such as global scene context, local contextual information, and the locations. However, it remains unclear how much each context contributes to the task. To address this, we first examine the contribution of each context cue [1], [2] to the performance in the context of depth order estimation. We find out the local context surrounding the points pair contributes the most and the global scene context helps little. Based on the findings, we propose a simple method, using a multi-scale densely-connected network to tackle the task. Instead of learning the global structure, we dedicate to explore the local structure by learning to regress from regions of multiple sizes around the point pairs. Moreover, we use the recent densely connected network [3] to encourage substantial feature reuse as well as deepen our network to boost the performance. We show in experiments that the results of our approach is on par with or better than the state-of-the-art methods with the benefit of using only a small number of training data.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملMonocular Depth Estimation using Multi-Scale Continuous CRFs as Sequential Deep Networks
Depth cues have been proved very useful in various computer vision and robotic tasks. This paper addresses the problem of monocular depth estimation from a single still image. Inspired by the effectiveness of recent works on multi-scale convolutional neural networks (CNN), we propose a deep model which fuses complementary information derived from multiple CNN side outputs. Different from previo...
متن کاملDenResNet: Ensembling Dense Networks and Residual Networks
We combine various state of the art approaches to training deep convolutional neural networks to achieve the best performance possible on the Tiny ImageNet dataset. We emphasize the depth of the network through residual networks, transfer learning with pretrained models, and ensemble methods. We achieved a final ensemble test error of 25.6%, which places us at the top of the leaderboard. We fur...
متن کاملConvolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image
Convolutional neural network (CNN), one of the most commonly used deep learning methods, has been applied to various computer vision and pattern recognition tasks, and has achieved state-of-the-art performance. Most recent research work on CNN focuses on the innovations of the structure. This thesis explores both the innovation of structure and final label encoding of CNN. To evaluate the perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.08063 شماره
صفحات -
تاریخ انتشار 2017